

Challenges in Studying PFAS Health Effects

- 1. 5000+ on market one by one will be replaced
- 2. Multiple routes of exposure that we don't fully understand (lacking data)
- 3. Half-lives and persistence are not predictable based on structure
 - Sex-based differences within a species
 - · Species differences in clearance
- 4. Development as a sensitive period for this class
- 5. Mode of action not understood for any of the PFAS
- Issues to address by in vitro testing: where is the chemical, solubility of compounds, IVIVE
- 7. Mixtures exposure problem

How can NTP generate faster responses?

Developed focused work-groups for REACT:

Responsive Evaluation and Assessment of Chemical Toxicity

Primary goal:

To provide enough targeted information in relatively short time frames for Centers/Agencies/Departments/Institutes or states to make decisions

- Currently, evaluating newer PFAS in an integrated fashion by using in silico, in vitro, and in vivo approaches
 - In silico assessment of the class using Leadscope QSAR
 - In vitro assessments of potential liver and other target tissue toxicity, chemical clearance, and developmental toxicity
 - In vivo assessments of PBPK, potential general, developmental, and immune toxicity
 - Communicate with our research colleagues to save time/money

Targets of interest

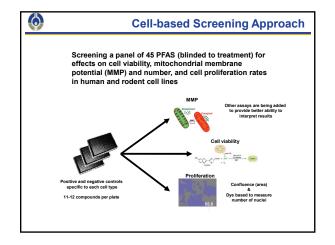
- · Fetal development
 - Birth weight decrements (transient at low doses; permanent at high doses)
- Adipose
- Overweight if developmentally exposed (transient?), underweight at high doses
- · Breast/Mammary gland
- Decreased breastfeeding duration/efficiency/ability
- Mammary developmental delays with no change in other pubertal timepoints (in studies that have evaluated this tissue) – permanent change in those studies that have evaluated latent effects
- Liver
- Hepatocellular hypertrophy, lipid deposition, enlarged relative liver weight
- Liver disease (altered enzyme levels, cancer, etc)
- Endocrine disruption
 - down regulates ER pathways in MG and liver
- Thyroid target: altered TT4 and fT4, but little effect on TSH
- Kidney
- altered glomerular filtration rate; cancer

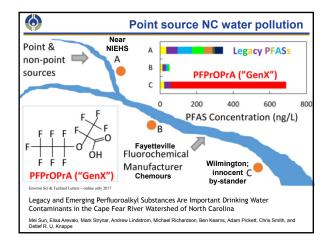
Ongoing Work on Uncharacterized PFAS

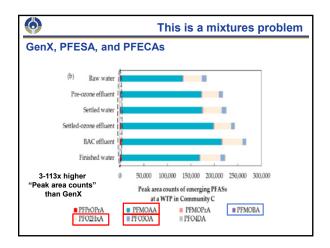
EPA library of 75 chemicals (underway....)

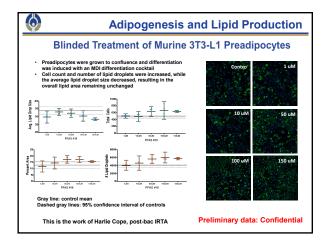
NTP/EPA collaborative effort plan

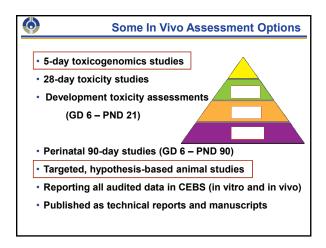
	NTP	EPA
Endpoint of Interest		
Hepatotoxicity	Х	
Developmental Toxicity	Х	х
Immunotoxicity	Х	
Mitochondrial Toxicity	Х	
Developmental Neurotoxicity		х
Hepatic Clearance	Х	
Plasma Protein Binding		х
Enterohepatic Recirculation		х
In Vitro Disposition	Х	X

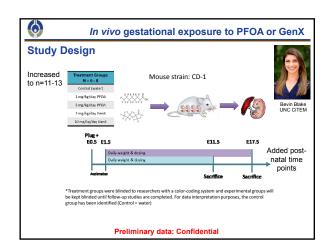


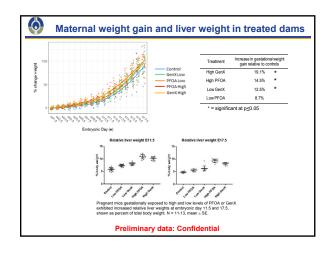

Blinded Evaluation of 45 PFAS at NTP

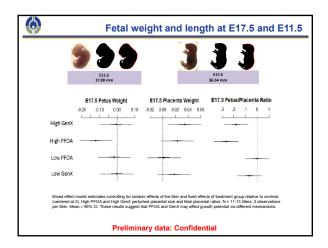

Specific In Vitro Assays


Most grown in 384-well models

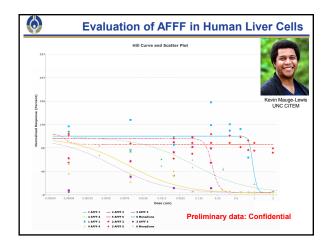

Endpoint of Interest	Assay	
Adiposity	3T3-L1 high throughput assays for adipogenic and lipogenic effect (mouse)	
Hepatotox	Metabolomics in HepaRG; cytotoxicity assays; mitochondrial function (human and rat)	
Immunotox	NTP Immunotoxicity Contract	
Placental Model	Using human JEG-3 cells for screening; Mouse model for evaluating fetal growth potential	
Mammary gland model	Human MCF-7 cell proliferation assays and mouse HC-11 cytotoxicity & milk protein production assays	
Renal Transport	Renal proximal tubule permeability assay in rats and humans (contracted)	
Embryoid Bodies	Looking at transcriptional markers of differentiation and cell viability	

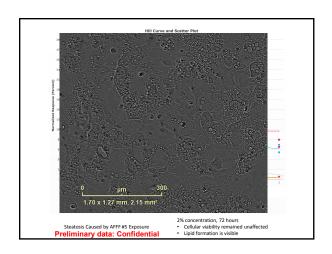












We all need to work together..... Communicate compounds that are being tested, together or separately – diluent is important for in vitro testing, don't want to duplicate efforts, difficult to acquire many of those we are interested in Half-lives and metabolism of most are not known and cannot be predicted by size or substitution group; the M≢F for several, adult and offspring are not equal Use additional high throughput methods to test large numbers of compounds at once - Txomics Inclusion of developmental stages in HTT Mode or mechanism of action studies should be done at human relevant exposures (which we also don't know for more than about 15)

