Air Force Civil Engineer Center

Integrity - Service - Excellence

Technology Demonstration-Validation Projects for PFAS Remediation

Dr. Kent C. Glover Remedial Systems SME AFCEC/CZTE

November 7, 2018

Purpose

Survey of AFCEC demonstration-validation projects related to PFAS remediation technology

- AFCEC role in technology development and technology transfer
- · Summary of completed and continuing projects
- Examples
 - · Source zone enhanced mass transfer and treatment
 - · Electrochemical treatment
 - · Enzymatic degradation

PFAS: per- and polyfluoroalkyl substances

Environmental Broad Agency Announcement (BAA)

- · AFCEC environmental technology BAA projects
 - Address AFCEC-specific technology challenges for priority sites and contaminants
 - · Emphasize field-scale technology demonstration and validation
 - Promote technology transfer from pilot testing to wide-spread use by remediation practitioners
 - Address technology needs for environmental restoration and compliance
- · Current BAA initiatives for environmental restoration
 - · High resolution site characterization
 - · Remediation of persistent source zones
 - e.g., DNAPL, low permeability
 - Characterization and remediation of emerging contaminants e.g., PFAS, 1,4-D

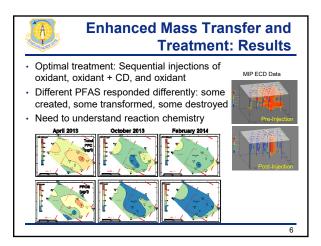
Competed BAA Projects: PFAS Initiative

Project Title	End Date
Chemical Treatment of Soil and Groundwater Contaminated with Perfluorinated Compounds found in Aqueous Fire Fighting Foams	2013
Chemical Oxidation and Inclusion Technology for Expedited Soil and Groundwater Remediation	2015
Use of Boron-Doped Diamond Electrodes for Treatment of Perfluorinated Compounds	2015
Is Bioremediation a Relevant Attenuation Mechanism for Perfluorinated Compounds?	2014
In-situ Enzymatic Oxidative Treatment for Perfluorinated Compounds	2017
Focused Remedial Investigation of Potential Ecological Effects of Perfluorinated Compounds and Associated Human Exposures from Fish Consumption	2015

- Available project information
- Fact sheet and presentations
- Journal article(s)
- Final report

1

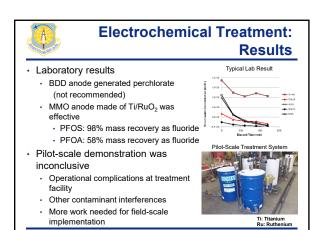
Enhanced Mass Transfer and Treatment of Source Zones


- Concept
 - · Cyclodextrin (CD) to enhance contaminant availability
 - Advanced oxidation with liquid solution of dissolved ozone, hydrogen peroxide, buffered sodium persulfate
- Design
 - High resolution site characterization
- · Bench-scale testing
- Field pilot tests with three treatment cells to optimize treatment sequence

Langley-Eustis Fire Training Area

BAA FA8903-11-C-8004: Chemical Oxidation and Inclusion Technology for Expedited Soil and Groundwater Remediation

5

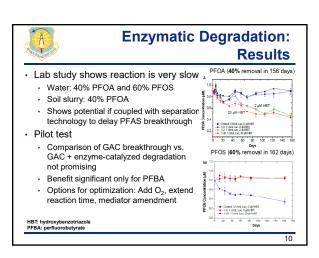


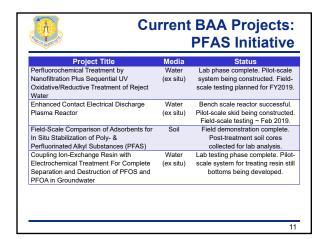
Electrochemical Treatment of Perfluorinated Compounds

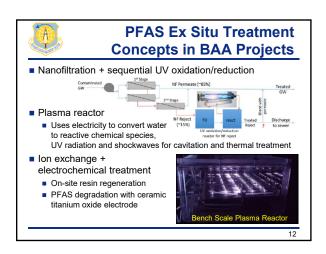
- Concept
 - PFAS degradation on surfaces of non-consumable electrical anodes
 - Mechanisms: direct electron transfer, hydroxyl radical generation, oxidants generated from salts
 - Approach
 - · Characterize PFAS at a FTA site
 - Lab tests with site groundwater mixed metal oxide (MMO) boron doped diamond (BDD)
 - Develop pilot-scale ex situ treatment unit

BAA FA8903-11-C-8008 : Use of Boron-Doped Diamond Electrodes for Treatment of Perfluorinated Compounds

_


Enzymatic Degradation


- Concept
 - Highly reactive oxidizing agents for degradation (e.g. laccase)
 - Couple with GAC to destroy PFAS and delay breakthrough
- Approach
 - Laboratory testing
 Enzyme selection based on reactivity, stability/activity and cost
 - Pilot-scale demonstration


Characterize GAC breakthrough (PFAS, precursors); Introduce enzyme to GAC column; Rest column (1 month); resume flow

BAA FA8903-12-C-0005: In-situ Enzymatic Oxidative Treatment for Perfluorinated Compounds

ime flow prinated

Discussion and Questions

Air Force Civil Engineer Center (AFCEC)
Environmental Management Directorate
Technical Division (CZTE)

Kent Glover, Remedial Systems SME: kent.glover@us.af.mil
Monique Nixon, BAA Program Manager: monique.nixon@us.af.mil

AFCEC BAA email: afcec.czte.baa@us.af.mil
AFCEC web: https://www.afcec.af.mil/

13