

Kirtland Bulk Fuels Facility (BFF)

- Groundwater plume appeared to be migrating toward drinking water supply wells
 - Cleanup has been a top AFCEC priority since 2010
 - Remediation success has been driven by adaptive and iterative process
 - Refining the conceptual site model (CSM)
 - Selecting, designing and optimizing remediation systems
 - Presentation objective Demonstrate benefits of CSM-driven remediation at a challenging site

Remediation Challenges

Kirtland Bulk Fuels Facility

Plume: Benefits of CSM-

Driven Remediation

Kent Glover and John Gillespie

Technical Support Division

November, 2019

AFCEC Environmental Directorate

- High visibility with public and Congress
 - Senior leadership committed high level of expertise, contract support and public outreach
 - Diverse stakeholders: AFCEC, NMED, USGS, Water Utility, EPA, Albuquerque, VA Hospital, Citizen Action Group
- Complex site characteristics
 - Deep vadose contamination: LNAPL and vapor phase
 - LNAPL at water table : ~500 ft below surface
 - Large EDB plume with very low MCL : 0.05µg/L
 - Off-base urban infrastructure
- Water table rising as regional water use changes
- Disappearance of floating LNAPL in groundwater wells
- Changes in groundwater flow direction

- Sentinel wells give early warning to trigger contingency
- Water supply wells screens at greater depths than plume
- Three screen intervals per sentinel location
 - Water table
 - Above A2 confining unit
 - Below A2 unit

Extraction rate increased from 50 to 1,800 cfm

- Expand SVE footprint to hot spots
- Perform SVE pilot tests
- Optimize extraction and treatment

Use of CSM in Distal Plume Remediation

- Key Considerations in P&T system design
 - Flow & transport model recalibrated to address 450 ft bgs clay zone
 - Distribution & orientation of channel deposits
 - Urban infrastructure
- Stepwise approach as each pumping well was brought on line
 - Allowed feedback loop to refine CSM and optimize design of later wells
 - Example: Design alternatives for 4th and 5th extraction wells

						106233
		Pumping Rate (gpm)				910 Pm 🖉 🔸
Ap Satu Well	proximate rated Screen (ft)	Baseline	Run 1	Run 2	Run 3	
KAFB-106228	80	0	-150	-150	-150	
KAFB-106233	80	0	-150	-150	-150	
KAFB-106234	80	0	-150	-150	.200	
EXT-2	80	0	-150	\bigcirc	0	A Design of the local data and t
EXT-3	80	0	0	0	0	
EXT-6	80	0	-75	-75	-75	100
KAFB-7	465	-300	675	525	575	

Projected EDB Clean Up for Design Alternatives

Upper part of plume controls cleanup north of Gibson Blvd

19

Result: Public and Stakeholder Acknowledgement of Success

- Increased public awareness and involvement
 - Proactive & transparent communication
 - Public meetings, poster sessions, deep dives & field trips
 - Direct public access to technical experts
- Improved public relations
- Dramatic changes from confrontation to seeking clarification of complex technical topics

Editorials
Editorials: KAFB, NM have cleanup flowing in right
direction
V/Apagene Apple Editorial Inter

23

Current Focus of Kirtland TWG

- Goal: Transition to longterm remedy
- Vadose zone: bioventing pilots to promote microbial degradation
 - Raise moisture content
 - Deliver oxygen
- · Saturated zone EDB: In situ biodegradation pilot
 - Baseline, recirculation tracer test, passive monitoring (2017)
 - Biostimulation: two designs (2018-2019)
 - Additional passive monitoring (on-going)

Conclusions

25

- Meeting Kirtland BFF challenges requires rapid deployment of multiple remedial technologies in a complex setting
- Cleanup success driven by an adaptive remedial approach with strong links to an evolving CSM
- A functioning interagency TWG has been key to success
 - Adaptive, transparent and collaborative
 - Data-driven decision process
 - 70% solutions
 - Stepwise design/operation with CSM feedback loops
- Benefits of CSM-driven remediation
- Builds stakeholder support to remediation approach
- Shortens time to meet performance objectives
- Builds confidence among leadership of all agencies and stakeholders

Kent Glover (Kent.Glover@us.af.mil) John Gillespie (John.Gillespie.3@us.af.mil) AFCECICZTE 2261 Hughes Ave, Ste 155 JBSA Lackland AFB, TX 78236-9853

For media inquiries, please contact the Air Force Installation and Mission Support Center public affairs office email: AFIMSC.pa.workflow@us.af.mil or call (866) 725-7617