





Our Unique NetworkOur Unique NetworkState/City/Local GovernmentGederal GovernmentOrivate SectorOrivate SectorOtakeholdersOtakeholdersOtakeholders



### Benefits to DOD and DOE

- ► Facilitate interactions between federal managers and state regulators
- Increase consistency of regulatory requirements for similar environmental problems in different states
- $\blacktriangleright$  Provide harmonized approaches to using innovative technology across the nation
- ► Reduce review and approval times for those innovative approaches

### 

### ITRC Accomplishments

**Educates** state regulators on the use of innovative technologies

Promotes the use of innovative technologies

Unites state approaches to complex topics

Inspires collaboration over adversarial relationships

🕅 🕋 Eris



| 2020 Teams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| <ul> <li>Use of Soil Background Concentrations in Risk Assessment (NEW)</li> <li>Per- and Polyfluoroalkyl Substances (PFAS) Update &amp; Training</li> <li>1,4-Dioxane (Continuing until Dec. 2020)</li> <li>Harmful Cyanobacterial Blooms (Continuing until Dec. 2020)</li> <li>Incremental Sampling Methodology Update (Continuing until Dec. 2020)</li> <li>Vapor Intrusion Mitigation Training (Continuing until Dec. 2020)</li> <li>Advanced Site Characterization Tools (ASCT) (Due in Early 2020)</li> <li>Optimizing Injection Strategies &amp; In Situ Remediation Performance (Due in April 2020)</li> </ul> |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 |







### McCandless-2

### McCandless-3

### Structure of this In Situ Optimization Document

- ▶ Remedial Design Characterization (Ch 2)
- ► Amendment, Delivery, Dose Design (Ch 3)
- Implementation & Feedback (Monitoring) Optimization (Ch 4)
- ► Regulatory Perspectives (Ch 5)
- Community & Tribal Stakeholder Considerations (Ch 6)

Hot links \* Tables \* Mouse-over Definitions \* Factsheets \* References \* Case Studies

### 

## Who is this Document written for? The remediation manager who has had a failure of some type: Has pushed or moved the plume where they didn't want it go Amendment is reacting with the geochemistry Delivery method not compatible with hydrogeology Have successfully cleaned up 50% of the mass and but stalled out for the rest The practitioner who is just about to start an in situ remediation project and wants to make sure they have chosen the correct remedy This document is NOT a 101 class for remediation! It assumes a basic

This document is NOT a 101 class for remediation! It assumes a basic CSM has been established and the hydrogeology is known

### 🔞 🚾 Eris

### The Problem & Need for Optimization

Out of all the proposals received by state regulators for remediation projects, about 40% of regulators deemed the first submittal as <u>incomplete</u>.

Whv?

✓ proposed remedy was not fully supported by the CSM

- ✓ CSM was inadequate
- ✓ inadequate amendment placement according to the CSM

### 📆 🖻 ERIS

# Preliminary Assessment/Site Preliminary Assessment/Site Investigation/Feasibility Study Remedial Action Decision or Record of Decision Remedial Action Implementation





### McCandless-4



| All         Reference of MW data van fail understanding of<br>permesbility (b) available for include and performance of the second sec                                                                                                                                                       |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| All         Educer of MW data vas fall understanding of<br>semistrating (reg. satisfielt in sea falling vas<br>resultanting (reg. satisfielt in sea<br>resultanting |  |
| Uncreasine expectations whom a full is to Ch.7. Knowsholg or delivery and anomelenent<br>understanding of the specific calleages – e.g. limitations in a subviving contrast and adoptate residence time<br>matrix back diffusion, which can lead to a sub-standard durb matrix<br>constrainting concentration produced after intal<br>meroprovement in concentrations produing circles.<br>Beedrock The anomet of communitant mass substitution in Links to TIRC: FractRev1.2017,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Bedrock The amount of contaminant mass sorbed into Link to ITRC- FracRX-1 2017,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| bedrock secondary porosity (https://www.frcweb.org/Gadance/LstDocuments?Topc1<br>Dar588_SchZmirt_Dar60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Soil Lack of understanding of constrainment many Applications of MMPT. MMPT.1077 could of with high<br>sorbed airs free grained soils. Constrained and the source of the sou                                                                                                                        |  |
| Ground Variabily of K and calculated scenary velocity lighter resolution lag toxing. Insert of the toxing<br>m contaminated intervals in the media to actimize the immediate galactic determine amendment distribution in<br>ROI (radius of influence) delivery approaches<br>and resolutione time within ROI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

|                    |                          |                                                                                                                                                                                                                    | it De very and Dose Design Chapter 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Amendment<br>Class | t Amendment<br>Specifics | Challenges, Lessons Learned, and/or Best Practices                                                                                                                                                                 | Discussion, Document Section, Links                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| All                |                          | Reaction kinetics is consistent with time of contact.                                                                                                                                                              | Link Appendix A. for specific discussioniof amendments, kinetics and<br>sometimes of such susceptions. Units 2.2.2.6.2.6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| isco               | All                      | Bench testing actual doxing vs using default values to determine<br>oxidant demand that is representative of fall scale implementation                                                                             | presentation of the an automation for the state of the st       |
|                    | Persulfate               | The background geochemistry including total oxidant demand (TOD)<br>is essential to identify the loading of base activator (NaOH). Persultate<br>can be used as direct oxidant or in an AOP mode with multiple     | Link To Chemical Oxidants Bench Testing to determine buffering capacity of the<br>and http://www.peroxychem.com/media/247761/peroxychem-kloour-peroallate-<br>akaline-activation-guide-66-84-ord-17.pdf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | Permanganate             | Exceeding the solubility of potaesium permanganate in water resulting<br>in possible plagging (new) injection screen, filter pack and formation                                                                    | Link to Chemical Oridants -<br>http://www.caruscorporation.com/resources/content/71%documents/RemOr6/21<br>8%208/slability%209/inal.pdf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Anaerobic          | All                      | Anaenobic biotreatment technologies are typically effective when<br>geochemical conditions such as relatively lower redox (e.g., lower than<br>- 200 m/ are achieved. Depending on specific geochemical conditions | It is essential to collect background and baseline geochemical data including<br>elettors acceptor demand and to understand the existing biodegradation<br>pathways before designing the leading for the amendment. Use a highly soluble<br>more standard and the solution of the so |
|                    | Soluble                  | Low persistence requires multiple injection events to overcome matrix<br>back diffusion                                                                                                                            | Typically used to get anaerobic conditions started and then followed by non-<br>tookeble. Use to A13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | Solids                   | Mulch, chitin, or other solids must be emplaced by trenching, soil<br>mixing, or fracturing                                                                                                                        | Must achieve adequate loading to promote degradation reaction within<br>treatment zone which is dependent upon width of PRB trench and groundwater<br>flow rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Acrobic            | All                      |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    | Solids                   | Estimating diffusive transport of slow released coygen source in finer<br>grained soils to develop ROI.                                                                                                            | Find the appropriate gas diffusion coefficient or conduct a treatability study<br>(Allain et al. J. Environ, Monit, 2008, 10, 1326-1336). Link to A1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | Liquids                  | Short lived release of onygen from hydrogen peroxide requires makiple<br>events                                                                                                                                    | Develop a good design basis for the amount of hydrogen penside needed<br>considering its pensitence and residence time within ROI, and plan for multiple<br>njection sevents or continuous feed system if waranted. Consider different<br>owgen source. Link to A.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                    | Common y Encounter                              | ed Issues Associated W th F eld Implei                                                                                                                                     | nentat on Chapter 4                                                                                                                   |
|--------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Amendment<br>Class | Field Implementation -<br>Technology, Amendment | Challenges, Lessons Learned,<br>and/or Best Practices                                                                                                                      | Discussion, Document Section, Links                                                                                                   |
| All                | < fracture pressure injection                   | The inability of the injection system, as designed<br>and operated, to maintain injection pressures below<br>fracture pressures required for distribution.                 | Do not exceed fracture pressures to maintain<br>controlled distribution                                                               |
|                    | > fracture pressure injection                   | The inability of the injection system, as designed<br>and operated, to maintain injection pressure and<br>flow rates above fracture pressures required for<br>distribution | Review pump curves of pressure vs. flow.                                                                                              |
|                    | > fracture pressure solids<br>emplacement       | The inability of the emplacement system, as<br>designed and operated, to maintain injection<br>memory along features provided for                                          | Review pump curves of pressure versus flow and size<br>of solids it can pump                                                          |
|                    | DPT Delivery                                    | Losing pressure control as rods are added or<br>removed to achieve target depths                                                                                           | Utilization of an <i>inner hose</i> system to maintain<br>constant pressure.                                                          |
|                    | Injection Wells                                 | Don't exceed pressure rate of well seal to avoid<br>compromising well for future injection                                                                                 |                                                                                                                                       |
| ISCO               | лп                                              | Maintaining injection pressures and flows during<br>startup at multiple manifolded injection locations                                                                     | Ensure system design and operating procedures<br>prevent fracturing of the formation. Consider<br>automated systems as best practice. |
|                    | СНР                                             | Daylighting events do not stop once flow is shut<br>down. Exothermic energy input has been<br>excessive and is driving pressure release for a                              | Maintain injection rates, according to demonstrated<br>specification to minimize daylighting.                                         |
|                    | Permanganate                                    | Have adequate neutralization chemicals available<br>for daylighting or spill events.                                                                                       |                                                                                                                                       |
| Anaerobic          | АШ                                              | Not achieving anoxic and pH specification for<br>dilution water.                                                                                                           | Note pH may drop at least one order of magnitude<br>(one pH unit) after mixing with amendment                                         |
|                    | Solids                                          | Daylighting events do not stop once flow is shut<br>down.                                                                                                                  | Maintain emplacement rates as those specified and<br>demonstrated to minimize daylighting.                                            |



### RDC: Remedial Design Characterization

### Objectives:

- Identify the data required to obtain a focused understanding of the geologic, hydrogeologic, geochemical, and microbial nature of the site conditions in specific support of in situ remedial actions. These parameters inform the remedial approach and technology selection.
- ✓ Geology stratigraphy, mineralogy, fractures, soil properties that define flow regimes
- ✓ Hydrogeology heterogeneities, aquifer properties that influence flow and transport
- $\checkmark$   $\,$  Geochemistry identify electron acceptors, competitors, and metal mobilization risks
- ✓ Microbiology assess degradation potential

### 

| Downster                                            | In<br>App | i Situ<br>roach | Reme                      | diation Pha        | se/Step                   |                                       |
|-----------------------------------------------------|-----------|-----------------|---------------------------|--------------------|---------------------------|---------------------------------------|
| Parameters                                          | Abiotic   | Biotic          | Alternatives<br>Screening | Remedial<br>Design | Performance<br>Monitoring |                                       |
| Phy                                                 | ysical P  | ropertie        | s                         |                    |                           |                                       |
| Provenance and Mineralogy                           | м         | м               | HIGH                      | MEDIUM             | LOW                       |                                       |
| Stratigraphy                                        | м         | м               | MEDIUM                    | HIGH               | LOW                       |                                       |
| Degree of Weathering of Geologic Formation          | м         | м               | MEDIUM                    | HIGH               | LOW                       |                                       |
| Fracture Representative Aperture and<br>Length      | м         | м               | MEDIUM                    | HIGH               | LOW                       |                                       |
| Fracture Connectivity / Rock Quality<br>Designation | м         | м               | MEDIUM                    | HIGH               | LOW                       | LEGEND                                |
| Fracture Orientation                                | м         | м               | MEDIUM                    | HIGH               | LOW                       | M, L = Applicability                  |
| Grain Size Distribution                             | м         | м               | LOW                       | HIGH               | LOW                       | Hi, Med, Low                          |
| Bulk Density                                        | м         | м               | LOW                       | HIGH               | LOW                       | importance of data                    |
| Fraction of Organic Carbon                          | м         | м               | MEDIUM                    | HIGH               | LOW                       | at the remediation<br>phase indicated |
| Primary and Secondary Porosity                      | M         | м               | MEDIUM                    | HIGH               | LOW                       |                                       |



| Chapter 3: Amenc | dment, Dose, D | Delivery Design           |    |
|------------------|----------------|---------------------------|----|
| THE DESIGN WHEEL | Output         | Bunch Test<br>Price Prise |    |
|                  |                |                           | 27 |

| A    | mendr                                                       | nent Selection To                                                                                                                                                                                                                                                                                                                                                                                                                                    | able                                                                                                                                                                                                      |                                                                                                                                                |    |
|------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----|
|      | Treatment Type                                              | Description/<br>Summary                                                                                                                                                                                                                                                                                                                                                                                                                              | Target COCs                                                                                                                                                                                               | Typical Injection/Emplacement Technologies<br>Methods                                                                                          |    |
|      | Common Biotic Amend                                         | ments (A.1)                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                           |                                                                                                                                                |    |
|      | Aerobic bioremediation<br>(A1.1)/<br>Biological oxidation   | Ambic dependation occurs prodominantly in sear-waffee strantistical divides zone<br>ornitomentiin (Only for queging, calcium persodie down't work in vadowe zone).<br>Naturally scoreing arothe microorganism ar widely disposed, and usually sear<br>to moderate down of hydrogen persodie, calcium persodie, or magnetism persodie<br>persodie.                                                                                                    | <ul> <li>Perroleum hydrocarbons and some fael<br/>oxygonates (a.g., meðyl twitary-bæyl ether<br/>(MTRE).</li> </ul>                                                                                       | Advisons direct injection     Ar sparging     Instuduction of oxygen via diffuod emission     Direct super phase injection                     |    |
|      | Co-metabolic aerobic<br>bioremediation (A1.2)               | Co-makedom trouben dagmadation of contaminants using anzymes produced by<br>principagations as a stand of consensation of a systemy results and makeas. An<br>experimental system of the system of the system of the system of the<br>contaminants. Most co-matchedic processes socie well area bolis confidents and may<br>repart origins different six strainable confidents and may<br>repart origins different six strainable confidents and may | Chlorinand solvers (TCT, DCE, VC, DCA)<br>Chlorofern<br>MTES<br>1,4-doxme<br>THF<br>Research<br>PADia<br>9 PADia<br>Some posicides                                                                        | <ul> <li>Tundag/Sul Mong</li> <li>Doot gab a spotsa</li> <li>Permanti spotsa</li> <li>Permanti spotsa</li> <li>Roquye with fit gave</li> </ul> |    |
|      | Anaerobic<br>bioremediation (A1.3)/<br>biological reduction | Contaminants are depended via a subactive process by contain types of microbes under<br>manufaction distants. Permetable organic substratas are injected or placed and the<br>subsurfacts to unbacted the production of Trydroger, which is in term used by the microbes<br>in the medactive machines.                                                                                                                                               | Chlorisand solvens     Mary posticides and munitions     Curatis incegnatic compounds     Perocleam Hydrocarbone (to (spically by     introduction of electron acceptors like nitrate     and/or sulfate) | <ul> <li>Direct push injection</li> <li>Permanent injection wells</li> <li>PERs</li> </ul>                                                     |    |
| ITRC |                                                             | TABLE 3-3 Deta s of Amendme                                                                                                                                                                                                                                                                                                                                                                                                                          | nt Types and Typical n ect on/Em                                                                                                                                                                          | placement Technologies                                                                                                                         | 28 |



| 6   |                                                  | Direct Push                 | Injection Through | Electro-       | Solid Emp     | lacement   | Permeable  |  |
|-----|--------------------------------------------------|-----------------------------|-------------------|----------------|---------------|------------|------------|--|
|     | Delivery                                         | Injection (DPI)             | Wells &           | Kinetics       | [Link #       | # D4]      | Reactive   |  |
|     | Technique                                        | [link # D1]                 | Boreholes         | (This is       | Hydraulic     | Pneumatic  | Barriers   |  |
|     |                                                  |                             | [link # D2]       | injection      | Delivery      | Delivery   | (PRBs)     |  |
|     |                                                  |                             |                   | through wells) | Through Wells | Through    | [lmk # D7] |  |
|     | Hydrogeologic                                    |                             |                   | [link # D3]    | & Boreholes   | Open       |            |  |
| - P | Characteristics                                  |                             |                   |                | [link # D5]   | Boreholes  |            |  |
|     | Gravale                                          | <ul> <li>(Sopic)</li> </ul> |                   | NA             | NA            | IIIIK # DO |            |  |
| H   | Cobblos                                          | <ul> <li>(Sonic)</li> </ul> |                   | NA             | NA            | NA         |            |  |
| 6   | Sandy Soile                                      | • (Sume)                    |                   | 105            |               |            |            |  |
|     | (Sm. Sc. Sp. Sw)                                 | •                           | •                 | NA             | ۰             | ۰          | •          |  |
| 1   | Silty Soils (Ml, Mh)                             | •                           | ۲                 | •              | •             | •          | •          |  |
|     | Clayey Soils (Cl, Ch, Oh)                        | •                           | ٥                 | •              | •             | •          | •          |  |
| 1   | Weathered Bedrock                                | •                           | •                 | 0              | •             | •          | •          |  |
|     | Competent/Fractured<br>Bedrock                   | NA                          | •                 | NA             | ۲             | ۲          | ۲          |  |
|     | $K \le 10^{-3}$ To $10^{-4}$ (Low Perm<br>Soils) | •                           | ۲                 | •              | •             | •          | •          |  |
| 1   | $K \ge 10^{-3}$ (High Perm Soils)                | •                           | •                 | ٥              | ۲             | ٥          | •          |  |
|     | Depth > Direct Push<br>Conshilities              | NA                          | •                 | ٥              | ۲             | •          | ۵          |  |

### McCandless-5

### McCandless-6





| naptei                 | 4: Monitoring                                                                                                                                                                                                  |                                                                                                                                                                                                     |   |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Table 4-1, Typica      | I descriptions during process monitoring                                                                                                                                                                       |                                                                                                                                                                                                     |   |
| Data Type              | Scenario                                                                                                                                                                                                       | Potential Implication                                                                                                                                                                               |   |
| Water Level            | Water levels at nearby monitoring wells (e.g., 10 ft) show a<br>significant increase with very little fluid injected into the<br>injection well location                                                       | This type of result may indicate a connection or preferential pathway. Be<br>aware of the potential for daylighting and for amendment distribution<br>challenges.                                   |   |
| Pressure               | Injection pressures are higher than expected.                                                                                                                                                                  | Tight soils or link to section 3.6.1.2 biofouling may be causing blockage.<br>High pressures may result in fracturing or daylighting.                                                               |   |
| Pressure               | Injection pressures suddenly drop and flow rate increases.                                                                                                                                                     | A preferential pathway, link to section 3.6.1 fracture, or utility corridor<br>may have been intercepted or an injection pressure fracture may have<br>been created.                                |   |
| Physical<br>Parameters | Conductivity, temperature, turbidity, or other indicator parameter<br>of amendment (e.g., TOC, or color) is observed at a nearby<br>monitoring well (e.g., 10 ft) at a lower than planned injection<br>volume. | This type of result may indicate a connection or preferential pathway<br>between wells. It may also indicate a higher K area of the site, resulting<br>in a larger than anticipated fractured flow. |   |
| <b>1</b>               | +S.                                                                                                                                                                                                            |                                                                                                                                                                                                     | ĺ |





