

TECHNOLOGIES AND METHODS FOR CHARACTERIZING PFAS MASS FLUX NEAR GROUNDWATER-SURFACE WATER INTERFACES

CRAIG DIVINE, PHD, PG

NOVEMBER 7, 2023

Outline

Important PFAS Transport & Fate Characteristics

Typical Fire Training Area Conceptual Model

Example Vignettes Highlighting Importance of PFAS Transport at Groundwater-Surface Water Interfaces

Characterization Tools and Techniques

Future Needs and Priorities

Behavior of PFASs in the Environment is Complex

- Resistant to biological and abiotic degradation processes (Liou et al. 2010),
- Sorb to sediment and microplastics (Schaefer et al. 2021; Pramanik et al. 2020; Cheng et al. 2021; Scott et al. 2021)
- Exhibit self- assembly behavior (Dong et al. 2021)
- Partition into non-aqueous phase liquid (NAPL; Liao et al. 2022)
- Concentrate at air-water interfaces (Li et al. 2020; Brusseau and Guo 2022)
- Due to hyporheic exchange, PFAS plumes at multiple AFBs extend off-site >10 miles

There will be many sites where assessment and management of PFASs at the groundwater- surface water interface will be necessary

ARCADIS

Fire Training Area Conceptual Model

¹Range of measurements from 2 sampling locations in (January 2020 to December 2021; Edmiston et al., 2022) ²Representative measurements from Bessie well (December 2019 to October 2020; OCWD 2021)

The Toolbox

Porewater sampler

Seepage Meters

Rosenberry et al. (2008)

Passive Samplers

Sirem

Battelle

Aquanex

Streambed Passive Flux Meters (SBPFMs)

Streambed Point Velocity Probes (SBPVPs)

Courtesy Rick Devlin

MHE Equipment

TEFLUX

Stream Tracer Testing

Vertebrae Horizonal Wells

Courtesy Tim Johnson

Sentinel™ Passive Samplers

Field Testing Program

- >200 samplers at 7 sites (surface water and groundwater)
- Integrative response
- > 2-30 day deployment time

Linear response over > 5 orders of magnitude in concentration (short- and long-chains) Majority of data with 1.5:1 / 1:1.5 ratio (40% RPD)

Commercial availability

https://aquanextech.com

- Available ~US\$100
- Commercial labs will report the analysis as either a modified EPA Method 1633 or a modified EPA Method 537.1
- Mass of analytes (ng) sorbed on the Sentinel[™] converted to ng/L

SERDP project ER20-1127

Sediment Porewater Passive Sampling

Sentinel[™]: Modified stainless steel version for sediment

Conceptual prototype frame for deployment of array of passive samplers in sediment.

PFAS Insight[™] (Battelle)

PFASsive[™] (Sirem)

ARCADIS

Streambed Passive Flux Meters (SBPFMs)

Streambed Point Velocity Probes (SPVPs)

Schematics and photo of the SBPVP (Cremeans and Devlin, 2017). SPVP photo courtesy Rick Devlin

Groundwater flux

x Contaminant distribution

Contaminant flux

Thermo-Electric Water Flux Detection Probe (TEFLUX)

- Pressure, temperature, fluid conductivity, and bulk electrical conductivity sensors along axis
- Data time-series are collected during dynamic tidal or river stage variations
- Porosity is estimated from fluid and bulk conductivity via Archie's Law
- Estimates distribution of permeability and porosity
- Computes dynamic pore velocity and Darcy flux

Courtesy Tim Johnson (PNNL)

Stream Dilution Tracer Test

- 1. Add conservative tracer until steady state is achieved
- 2. Measure in-stream tracer concentrations along reach
- 3. Declines in tracer concentrations are assumed a result of groundwater flux

Distance Along Stream Reach (ft)

Mixed Tanks for Stream Tracer Test

Tracer Addition Location

Stream Loss Tracer Test

- SF₆ tracer applied to creek (~0.3% solubility)
- Breakthrough at pumping well (x=850 ft) at 5 days
- Tracer detected in all monitoring wells
- Transport velocity within primary pathways ~200 ft/day
- ~5% of water at production bore from the creek

17

Vertebrae[™] Segmented Horizontal Wells for PFAS Mass Discharge

> Vertebrae is commercially available and cost effective

- > Easily installed, including under surface infrastructure
- Screen placement within +/- 1.5 feet of targets
- > A-DTS and tracer testing yield reasonable flux values
- Spatial variability: >90% mass discharge from two subzones
- Can measured mass discharge changes over time
- Can support remedy performance evaluation, risk assessment, etc.

ESTCP project ER20-5026

Future Needs and Priorities

Stormwater

- \succ High stage \rightarrow drive hyporheic exchange
- ➤ Turbulent flow → Foaming potential and enhanced concentration of PFAS
- ➢ High sediment/microplastic → Enhanced PFAS transport
- ▶ PFAS chemograph may be complex \rightarrow first flush?

Post-storm hydrograph. Baseflow and runoff components were separated using environmental tracers (e.g., ¹⁸O, ²H, TDS, silica)

- ~20% of US underlain by karst or pseudo karst
- ➢ Sinkholes → High loading potential from stormwater
- ➤ High heterogeneity and anisotropy → Complex and fingered plumes with changes in groundwater flow directions under various hydrologic conditions
- > Rapid, long-distance transport \rightarrow Large plumes
- Springs → convergence of flow integrates contamination, main exposure point

*Left: Karst system conceptual model. Middle: Natural foam generated by turbulence. Right: ephemeral spring connected to conduits which only flow under high-flow conditions.*₁₉

Contacts

С

е

CRAIG DIVINE PHD, PG

Principal Hydrogeologist, Nixa, MO

- 720 308 5367
 - craig.divine@arcadis.com

Natural iron staining from reduced groundwater discharging from a sandstone aquifer to an oxic stream.

Summary of Flux Measurement Technologies and Methods

Method	Advantages	Limitations	Measurement time window	Measured Parameters		
Multilevel piezometers	Widely used and acceptedQuick and easy to installLow in material cost	 Challenges related to obtaining accurate hydraulic gradients over small distances Difficult to maintain in high energy water bodies 	Point scale (can be continuously measured)	Hydraulic gradient		
Seepage meters	Direct measure of fluxWidely used and accepted	 Less reliable in high energy water bodies Not well-suited for coarse sediments Often requires custom fabrication 	Hours to days	Groundwater flow		
Single-well tracer tests (SWTTs)	Direct measure of fluxWidely used and accepted	Typically used for horizontal fluxBest performs in higher groundwater flux conditions	Hours to days	• Darcy flux		
Streambed passive flux meters (SBPFMs)	 Provides long-term average estimates of groundwater flux 	Modest equipment, sampling, and materials costDifficult to maintain in high energy water bodies	Several days to a week	Darcy fluxContaminant flux		
In-stream tracer tests	Direct measure of fluxLearge measurement scale	Typically limited to small streams	Hours to days	Darcy flux		
Streambed point velocity probes (SBPVPs)	 Estimates independent of Darcy's Law calculations Wide range of operation 	 Requires active injection and not capable of collecting continuous data Moderate to high initial installation cost Not yet commercially available 	Point scale	Groundwater velocity		
TEFLUX	 High temporal resolution, continuous monitoring Simple operation Rugged construction suitable for difficult environments 	 Not fully demonstrated in the field Uncertainty in the effects of horizontal flow on the results 	Point scale (can be continuously measured)	 Hydraulic gradient Groundwater velocity Hydraulic conductivity Porosity 		

Some Commercially Available PFAS Passive Samplers

Sampling Device (Developer)	Description	Applications	Typical Deployment	Maturity	Resources
Sentinel™ Sampler	Granular organosilica sorbent in HDPE housing	Groundwater, surface water	1-2 Weeks, integrative	Field testing in progress.	Edmiston et al. (2023) https://aquanextech.com/collections/passi ve-samplers
POCIS (USGS)	Solid-phase sorbent (various) between two microporous polyethersulfone membranes, housed between metal rings. Originally developed for other organics and recently adapted for PFAS.	Surface water, groundwater (well diameter limitations).	Weeks to 1 month, integrative	Commercially available for other organic analytes, requires sorbent modification for PFAS	Kaserzon et al. (2014) https://est-lab.com/pocis.php
PFAS Insight™ (Battelle Laboratories)	Polymeric sorbent in metal housing	Groundwater, surface water, sediment porewater (in development)	1 Month, integrative	Commercially available	https://www.battelle.org/markets/environ ment/investigation-remediation/pfas- assessment-mitigation/pfas-insight- passive-sampling-technology
PE Sampler	Microporous PE tube containing sorbent (e.g., Strata X-AW).	Groundwater, surface water (in development)	~ 3 Months, integrative	Pilot field testing (groundwater) published. Additional field testing and development in progress.	Kaserzon et al. (2019) SERDP Project ER20-1156
DGT Sampler (DGT Research)	Filter membrane, diffusive gel layer, over sorbent phase within housing capsule. Originally developed for other analytes and adapted for PFAS.	Groundwater, surface water	Weeks, intrgrative	Commercially available. Field testing of modified designs in progress.	Wang et al. (2021)
Graphene Monolith (Univ. Rhode Island / Brown Univ.)	Surface-modified graphene hydrogel monolith	Groundwater, surface water	1 Week, equilibrium	Proof-of-concept field testing in surface water published	Becanova et al. (2021) SERDP project ER-1293
Dual-Membrane Passive Diffusion Sampler (DMPDB [™]) (EON Products)	No-purge sampler consisting of two separate semi- permeable membranes (one hydrophilic, one LDPE) around a single sample chamber for analysis of broad suite of analytes	Groundwater	2 Weeks, equilibrium	Commercially available	https://www.eonpro.com/dmpdb-case- studies-user- information/#1610739662295-3686640b- 07fd
SNAP Sampler (QED Inc.)	No-purge sampler using double-ended bottles that "snap" closed in-situ within the well casing. Developed for other analytes but may be applied for PFAS	Groundwater (note, bottleware may contain Teflon parts)	Days to months, equilibrium	Commercially available	https://www.qedenv.com/en- us/products/snap-sampler/

SERPD-ESTCP PFAS Passive Sampler Projects

Project Number	ER20-1127	ER23-7696	ER23-4022	ER20-1211	ER20-1293	ER20-1156	ER20-1363	ER21-5104	ER20-1073	ER20-1336	ER23-7741
PI or Contact	Craig Divine	Erika Carter	Paul Edmiston	Mei Sun	Rainer Lohman	Sarit Kazerzon	Julian Fairey	Andrew Jackson	Lee Blaney	Upal Ghosh	Jason Conder
		_			_		Readiness for what? Field testing? Compliance				
Technology Readiness Level	9	7	3	4	7	8	monitoring?	8-9	3-4	5	9
Commercially Available (if yes, incl. hyperlink)?	Yes	Yes	No	No	No	Yes	Yes	Yes	Yes* (membranes)	No	Yes
Can be analyzed by commercial labs?	Yes	Yes	No	Yes	no	Yes	Yes	Yes	Yes	Yes	Yes
Number of field samples to-date	200	5	0	0	36	150	0	200	0	0	150
Integrative or Equilibrium	Integrative	Integrative	Integrative	Integrative	Integrative	Integrative	Kinetic	Equilibroum	Equilibrium	Equilibrium	Equilibrium
				Fluorogel and functionalized		Strata XAW (Phenomenex), interchangeable to any	Weak Anion Exchange		Commercial anion- exchange		
Sorbent Media	Organosnica (Osorb)	Organosilica (Osorb)	Organosilica (Osorb)	resin	Oasis WAX	sorbeni	(WAX) resin	vvaler	membranes	Several	vvaler 0.4
Membrane	None	None	None	None	agarose	None	None	0.4um Stainless Steel	None	Several	0.4-µm polycarbonate
									9.7 (diameter), 1.4		
Dimention (cm, LxWxH)	4.5x2.5x0.3	4.5x2.5x0.3			3.75 x 3.75 x 0.8 cm	4x0.5x0.4	4 x 4 x 2	1,440 Length 6 OD	(height)	Variable	
Deployment Time (days)	2 to 30	TBD	TBD	TBD	TBD	3-180	≤ 90 (expected)	21-28	TBD	7-14 days	≥ ~2 to ∞ (water) ≥ ~7 to ∞ (sediment)
										can be tailored to	
Typical Detection Limits (ng/L)	1	1	TBD	TBD	TBD	1	TBD	1-5	TBD	need	1
Range of detection (ng/L)	1 to >100 000	1 to >100 000	TBD	TBD	TBD	1 to >100 000	TBD	1 to >100 000	TBD	can be tailored to	1 to > 100.000
Sampling Rate Range (L/day)	0.01 to 0.07	TBD	TBD	TBD	TBD	0.003-0.02	0.0025 to 0.017	Not Applicable	Not applicable	NΔ	Not applicable
	Nee Nee	Vee	N	155	Ne		In progress (diffusion coefficients in diffusive gel	No.	Ne	NA	
Are mass transfer rates publicly available (Yes / No)	Yes	Yes	NO		INO	Yes (doi's below)	layer)	Yes	INO	NA	
Manaharana Diffusion Osseffisiont Danas (anaO(d))	Net eveloped	Net en l'estele	Net en Beskle	Net en alle et le	0.4.0.0	Net eveloped	Net any Reality	0.5.4	TDD		ke (water) = ~ 0.5
Membrane Diffusion Coefficient Range (cm2/d)	Not applicable	Not applicable	Not applicable	Not applicable	0.10.8	Not applicable	Not applicable	0.5-1 cm/day	TBD	NA	day-1
Performance reference compound used?	No	IBD	IBD	IBD	IBD	No	No	Possible	IBD	Yes	Yes
0	No	N/s s	N/a a	N	N	No	Yes - isn't this a	N			N/s s
Surrogates used to assess recovery?	Yes	Yes	Yes	Yes	Yes	Yes	requirement?	Yes	Yes	Yes	Yes
Compatible with non-target semi-quantification	Yes	Yes	IBD	Yes	TBD	Yes	Not Tested	Yes	Yes	Yes	Yes
Compatible with TOP assay	Yes	Yes	IBD	Yes	IBD	Yes	Not lested	Yes	Yes	Yes	Yes
Capable of measuring mass flux	No	No	No	No	No	Yes (if this is mass loads?)	Yes	Yes	TBD	Yes	Yes
							Moderate; diffusion coefficient in Gel layer corrected to measured T using Stokes-Einstein				
Sensitivity to Temperature (low, moderate, high)	Moderate	Moderate	TBD	TBD	TBD	TBD	equation	Low	TBD	Low	Low
Sensitivity to Salinity (low, moderate, high)	Low	Low	TBD	TBD	TBD	Low	TBD	Low	Low	TBD	Low
Sensitivity to pH (low, moderate, high)	Low	Low	TBD	TBD	TBD	Low	TBD	Low	Low	TBD	Low
Sensitivity to DOC (low, moderate, high)	Low	Low	TBD	TBD	TBD	Low	TBD	Low	TBD	TBD	Low
Sensitivity to flow velocity (low, moderate, high)	Moderate	Moderate	TBD			Low	TBD	Low	Low	Low	
Surface water (applicable/not applicable)	Applicable	Applicable	TBD	Applicable	Applicable	Applicable	Applicable, not tested	Applicable	Applicable	Applicable	Applicable, tested
Stormwater water (applicable/not applicable)	Applicable, not tested	Applicable, not tested	TBD	Applicable, not tested	TBD	Applicable	Applicable, not tested	Applicable	Applicable, not tested	Applicable	Applicable, not tested
Groundwater (applicable/not applicable)	Applicable	Applicable	TBD	Applicable	TBD	Applicable	Applicable, not tested	Applicable/tested	Applicable	Applicable	Applicable, tested
	Ann line blann at the start	Applicable	TDD	Anniischle nettected	TRD	Natawaliashia	Applicable, not tooted	Annika akta /ta ata d		Applicable	Applicable, tooted
Sediment/porewater (applicable/not applicable)	Applicable, not tested	Applicable net test	I BU	Applicable, not tested	TBD		Applicable, not tested	Applicable/tested	Applicable, not tested	Applicable	Applicable, tested
wastewater (applicable/not applicable)	Applicable, not tested	Applicable, not tested	Not applicable	N = =	IBD	Applicable	Applicable, not tested	Applicable	Applicable	Applicable	N/s s
Direct drive compatible	Not applicable	Yes	NO TOD	Yes	INO	Not sure what this means	NO	Yes	Yes	Yes	Yes
Air (applicable/not applicable)	Not applicable	Not applicable	I BD	INOT APPLICABLE	no	Not applicable	Not applicable	Not Applicable	Not applicable	IBD	Not applicable
Firengnung Foam (applicable/not applicable)	Not applicable	Not applicable	Аррисаріе	IBD	not applicable	Not applicable	Not lested	Not Applicable	Not applicable	wny?	Not applicable
Photograph of current sampler				None							Ş

Literature Cited

Becanova, J., Z.S.S.S.L. Saleeba, A. Stone, A.R. Robuck, R.H. Hurt, and R. Lohmann. 2021. A graphene-based hydrogel monolith with tailored surface chemistry for PFAS passive sampling. Environmental Science: Nano 8: 2894–2907. https://doi.org/10.1039/D1EN00517K.

Brusseau, M.L., and B. Guo. 2022. PFAS concentrations in soil versus soil porewater: Mass distributions and the impact of adsorption at air-water interfaces. Chemosphere 302: 134938. https://doi.org/10.1016/j.chemosphere.2022.134938

Cheng, Y., L. Mai, X. Lu, Z. Li, Y. Guo, D. Chen, and F. Wang. 2021. Occurrence and abundance of poly- and perfluoroalkyl substances (PFASs) on microplastics (MPs) in Pearl River Estuary (PRE) region: Spatial and temporal variations. Environmental Pollutions 281: 117025. <u>https://doi.org/10.1016/j.envpol.2021.117025</u>

Cremeans, M.M., Devlin, J.F., McKnight, U.S., Bjerg, P.L., 2018. Application of new point measurement device to quantify groundwater-surface water interactions. Journal of Contaminant Hydrology 211, 85–93. https://doi.org/10.1016/j.jconhyd.2018.03.010.

Cremeans, M.M., Devlin, J.F., 2017. Validation of a new device to quantify groundwater-surface water exchange. Journal of Contaminant Hydrology 206, 75-80. https://doi.org/10.1016/j.jconhyd.2017.08.005.

Divine, Wadhawan, Pulikkal, Khambhammettu, Erickson, 2023. PFAS Requiring A Renewed Focus on Groundwater-Surface Water Interactions. GWMR, 43(1): doi: 10.1111/gwmr.12569

Dong, D., S. Kancharla, J. Hooper, M. Tsianou, D. Bedrov, and P.Alexandridis. 2021. Controlling the self- assembly of perfluorinated surfactants in aqueous Environments. Physical Chemistry Chemical Physics 23: 10029–10039. https://doi.org/10.1039/D1CP0 0049G.

Edmiston, Carter, Toth, Hershberger, Hill, Versluis, Hollinden, Divine, 2023. Field Evaluation of the SentinelTM Integrative Passive Sampler for the Measurement of Perfluoroalkyl and Polyfluoroalkyl Substances in Water Using a Modified Organosilica Adsorbent. GWMR, doi: 10.1111/gwmr.12574.

Horst, Divine, Quinnan, Lang, Carter, Guillette, Pulikkal. 2022. Where is the PFAS? Innovations in PFAS detection and characterization. GWMR 42: 13-23, doi: 10.1111/gwmr.12502

Kaserzon, S.L., D.W. Hawker, K. Booij, D.S. O'Brien, K. Kennedy, E.L.M. Vermeirssen, and J.F. Mueller. 2014. Passive sampling of perfluorinated chemicals in water: In-situ calibration. Environmental Pollution 186: 98–103. https://doi.org/10.1016/j.envpol.2013.11.030

Kaserzon, S.L., S. Vijayasarathy, J. Bräunig, L. Mueller, D.W. Hawker, K.V. Thomas, and J.F. Mueller. 2019. Calibration and validation of a novel passive sampling device for the time integrative monitoring of per- and polyfluoroalkyl substances (PFASs) and precursors in contaminated groundwater. Journal of Hazardous Materials 366: 423–431.

Layton, L., Klammler, H., Hatfield, K., Cho, J., Newman, M. A., & Annable, M. D. (2017). Development of a passive sensor for measuring vertical cumulative water and solute mass fluxes in lake sediments and streambeds. Advances in Water Resources, 105, 1-12

Li, F., J. Duan, S. Tian, H. Ji, Y. Zhu, Z. Wei, and D. Zhao. 2020. Short- chain per- and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment. Chemical Engineering Journal 380: 122506. https://doi.org/10.1016/j.cej.2019.122506

Liao, S., M. Arshadi, M.J. Woodcock, Z.S.S.L. Saleeba, D. Pinch beck, C. Liu, N.L. Cápiro, L.M. Abriola, and K.D. Pennell. 2022. Influence of residual nonaqueous- phase liquids (NAPLs) on the transport and retention of perfluoroalkyl substances. Environmental Science & Technology 56, no. 12: 7976–7985. <u>https://doi.org/10.1021/acs.est.2c00858</u>

Liou, J.S., B. Szostek, C.M. DeRito, and E.L. Madsen. 2010. Investigating the biodegradability of perfluorooctanoic acid. Chemosphere 80, no. 2: 176-183. https://doi.org/10.1016/j.chemosphere.2010.03.009

Pramanik, B.K., R. Roychand, S. Monira, M. Bhuiyan, and V. Jegatheesan. 2020. Fate of road- dust associated microplastics and per- and polyfluorinated substances in stormwater. Process Safety and Environmental Protection 144: 236–241. https://doi.org/10.1016/j.psep.2020.07.020

Rosenberry, D. O., & LaBaugh, J. W. (2008). Field techniques for estimating water fluxes between surface water and ground water (No. 4-D2). Geological Survey (US).

Schaefer, C.E., D. Nguyen, E. Christie, S. Shea, C.P. Higgins, and J.A. Field. 2021. Desorption of poly- and perfluoroalkyl substances from soil historically impacted with aqueous film- forming foam. Journal of Environmental Engineering 147, no. 2: 06020006.

Schaefer, C.E., V. Culina, D. Nguyen, and J. Field. 2019. Uptake of poly- and perfluoroalkyl substance at the air-water interface. Environmental Science & Technology 53: 12442-12448.

Wang, P., J.K. Challis, K.H. Luong, T.C. Vera, and C.S. Wong.2021. Calibration of organic-diffusive gradients in thin films (O-DGT) passive samplers for perfluorinated alkyl acids in water. Chemosphere 263: 128325. https://doi.org/10.1016/j.chemosphere.2020.128325